14.1 数据结构介绍
作为指针三剑客之三,图是树的升级版。图
通常分为有向(directed)或无向(undirected),有循环(cyclic)或无循环(acyclic),所有节点相连(connected)或不相连(disconnected)。树即是一个相连的无向无环图,而另一种很常见的图是有向无环图
(Directed Acyclic Graph ,DAG)。
图通常有两种表示方法。假设图中一共有 n 个节点、m 条边。第一种表示方法是邻接矩阵
(adjacency matrix):我们可以建立一个 n × n 的矩阵 G,如果第 i 个节点连向第 j 个节点,则 G[i][j] = 1,反之为 0;如果图是无向的,则这个矩阵一定是对称矩阵,即 G[i][j] = G[j][i]。第二种表示方法是邻接链表
(adjacency list):我们可以建立一个大小为 n 的数组,每个位置 i 储存一个数组或者链表,表示第 i 个节点连向的其它节点。邻接矩阵空间开销比邻接链表大,但是邻接链表不支持快速查找 i 和 j 是否相连,因此两种表示方法可以根据题目需要适当选择。除此之外,我们也可以直接用一个 m × 2 的矩阵储存所有的边。