跳到主要内容

6.1 算法解释

这里我们引用一下维基百科的描述:“动态规划(Dynamic Programming, DP)在查找有很多重叠子问题的情况的最优解时有效。它将问题重新组合成子问题。为了避免多次解决这些子问题,它们的结果都逐渐被计算并被保存,从简单的问题直到整个问题都被解决。因此,动态规划保存递归时的结果,因而不会在解决同样的问题时花费时间 · · · · · · 动态规划只能应用于有最优子结构的问题。最优子结构的意思是局部最优解能决定全局最优解(对有些问题这个要求并不能完全满足,故有时需要引入一定的近似)。简单地说,问题能够分解成子问题来解决。”

通俗一点来讲,动态规划和其它遍历算法(如深/广度优先搜索)都是将原问题拆成多个子问题然后求解,他们之间最本质的区别是,动态规划保存子问题的解,避免重复计算。解决动态规划问题的关键是找到状态转移方程,这样我们可以通过计算和储存子问题的解来求解最终问题。

同时,我们也可以对动态规划进行空间压缩,起到节省空间消耗的效果。这一技巧笔者将在之后的题目中介绍。

在一些情况下,动态规划可以看成是带有状态记录(memoization)的优先搜索。状态记录的意思为,如果一个子问题在优先搜索时已经计算过一次,我们可以把它的结果储存下来,之后遍历到该子问题的时候可以直接返回储存的结果。动态规划是自下而上的,即先解决子问题,再解决父问题;而用带有状态记录的优先搜索是自上而下的,即从父问题搜索到子问题,若重复搜索到同一个子问题则进行状态记录,防止重复计算。如果题目需求的是最终状态,那么使用动态搜索比较方便;如果题目需要输出所有的路径,那么使用带有状态记录的优先搜索会比较方便。