跳到主要内容

1.2 分配问题

455. Assign Cookies

题目描述

有一群孩子和一堆饼干,每个孩子有一个饥饿度,每个饼干都有一个饱腹度。每个孩子只能吃一个饼干,且只有饼干的饱腹度不小于孩子的饥饿度时,这个孩子才能吃饱。求解最多有多少孩子可以吃饱。

输入输出样例

输入两个数组,分别代表孩子的饥饿度和饼干的饱腹度。输出可以吃饱的孩子的最大数量。

Input: [1,2], [1,2,3]
Output: 2

在这个样例中,我们可以给两个孩子喂 [1,2]、[1,3]、[2,3] 这三种组合的任意一种。

题解

因为饥饿度最小的孩子最容易吃饱,所以我们先考虑这个孩子。为了尽量使得剩下的饼干可以满足饥饿度更大的孩子,所以我们应该把大于等于这个孩子饥饿度的、且大小最小的饼干给这个孩子。满足了这个孩子之后,我们采取同样的策略,考虑剩下孩子里饥饿度最小的孩子,直到没有满足条件的饼干存在。

简而言之,这里的贪心策略是,给剩余孩子里最小饥饿度的孩子分配最小的能饱腹的饼干。至于具体实现,因为我们需要获得大小关系,一个便捷的方法就是把孩子和饼干分别排序。这样我们就可以从饥饿度最小的孩子和饱腹度最小的饼干出发,计算有多少个对子可以满足条件。

注意

对数组或字符串排序是常见的操作,方便之后的大小比较。排序顺序默认是从小到大。

注意

在之后的讲解中,若我们谈论的是对连续空间的变量进行操作,我们并不会明确区分数组和字符串,因为他们本质上都是在连续空间上的有序变量集合。一个字符串“abc”可以被看作一个数组 [‘a’,‘b’,‘c’]。

int findContentChildren(vector<int> &children, vector<int> &cookies) {
sort(children.begin(), children.end());
sort(cookies.begin(), cookies.end());
int child_i = 0, cookie_i = 0;
int n_children = children.size(), n_cookies = cookies.size();
while (child_i < n_children && cookie_i < n_cookies) {
if (children[child_i] <= cookies[cookie_i]) {
++child_i;
}
++cookie_i;
}
return child_i;
}

135. Candy

题目描述

一群孩子站成一排,每一个孩子有自己的评分。现在需要给这些孩子发糖果,规则是如果一个孩子的评分比自己身旁的一个孩子要高,那么这个孩子就必须得到比身旁孩子更多的糖果。所有孩子至少要有一个糖果。求解最少需要多少个糖果。

输入输出样例

输入是一个数组,表示孩子的评分。输出是最少糖果的数量。

Input: [1,0,2]
Output: 5

在这个样例中,最少的糖果分法是 [2,1,2]。

题解

存在比较关系的贪心策略并不一定需要排序。虽然这一道题也是运用贪心策略,但我们只需要简单的两次遍历即可:把所有孩子的糖果数初始化为 1;先从左往右遍历一遍,如果右边孩子的评分比左边的高,则右边孩子的糖果数更新为左边孩子的糖果数加 1;再从右往左遍历一遍,如果左边孩子的评分比右边的高,且左边孩子当前的糖果数不大于右边孩子的糖果数,则左边孩子的糖果数更新为右边孩子的糖果数加 1。通过这两次遍历,分配的糖果就可以满足题目要求了。这里的贪心策略即为,在每次遍历中,只考虑并更新相邻一侧的大小关系。

在样例中,我们初始化糖果分配为 [1,1,1],第一次遍历更新后的结果为 [1,1,2],第二次遍历更新后的结果为 [2,1,2]。

int candy(vector<int>& ratings) {
int n = ratings.size();
vector<int> candies(n, 1);
for (int i = 1; i < n; ++i) {
if (ratings[i] > ratings[i - 1]) {
candies[i] = candies[i - 1] + 1;
}
}
for (int i = n - 1; i > 0; --i) {
if (ratings[i] < ratings[i - 1]) {
candies[i - 1] = max(candies[i - 1], candies[i] + 1);
}
}
return accumulate(candies.begin(), candies.end(), 0);
}